COMPOSITION OF THE ESSENTIAL OIL OF Centaurea dichroa

A. Altintas,¹ Y. B. Kose,² E. Yucel,³ B. Demirci,¹ and K. H. C. Baser¹

In Turkey, the genus *Centaurea* is represented by 182 species including 113 endemics, distributed particularly in the Southwest, and Central and East of the country [1-2]. The ratio of endemism is quite high (62.1%).

This paper reports the essential oil composition of *Centaurea dichroa* Boiss. & Heldr., an endemic plant from Turkey. Plant material was collected from Antalya: Tekirova, Cirali in June 2003. Voucher specimens are kept at the Herbarium of the Faculty of Pharmacy, Anadolu University in Eskisehir, Turkey (ESSE 14361, 14362).

The air-dried aerial parts of the plant were hydrodistilled for 3 h using a Clevenger-type apparatus to produce a small amount of essential oil which was trapped in *n*-hexane.

The oil was analyzed by GC using a Hewlett Packard 6890 system. An HP-Innowax FSC column ($60m \times 0.25$ mm, with 0.25 mm film thickness) was used with nitrogen as a carrier gas (1 mL/min). The oven temperature was kept at 60°C for 10 min and programmed to 220°C at a rate of 4°C/min, then kept constant at 220°C for 10 min and then programmed to 240°C at a rate of 1°C/min. The injector temperature was at 250°C. The percentage compositions were obtained from electronic integration measurements using flame ionization detection (FID, 250°C). Alkanes were used as reference points in the calculation of relative retention indices (RRI). Relative percentages of the characterized components are listed in Table 1.

For gas chromatography/mass spectrometry a Hewlett-Packard GCD system was used. Innowax FSC column (60 m \times 0.25 mm, 0.25 mm film thickness) was used with helium as a carrier gas. GC oven temperature was kept at 60°C for 10 min and programmed to 220°C at a rate of 4°C/min, and then kept constant at 220°C for 10 min and programmed to 240°C at a rate of 1°C/min. Split flow was adjusted at 50 mL/min. The injector temperature was at 250°C. MS were taken at 70 eV. Mass range was from *m*/*z* 35 to 425. Library search was carried out using the Wiley GC/MS Library and Baser Library of Essential Oil Constituents [3].

Eighty-five compounds representing 76.4% of the essential oil were characterized as listed in Table 1. Hexadecanoic acid (11.8%), caryophyllene oxide (9.8%) and spathulenol (5.8%) were the main components detected.

The authors are grateful to AUBIBAM for oil analysis support.

UDC 547.913

¹⁾ Faculty of Pharmacy, Department of Pharmacognosy, Anadolu University, 26470 Eskisehir, Turkey, e-mail: aaltinta@anadolu.edu.tr; 2) Faculty of Pharmacy, Department of Pharmaceutical Botany, Anadolu University, 26470 Eskisehir, Turkey; 3) Faculty of Science, Department of Biology, Anadolu University, 26470 Eskisehir, Turkey. Published in Khimiya Prirodnykh Soedinenii, No. 6, pp. 496-497, November-December, 2004. Original article submitted June 22, 2004.

	-			
RRI	Compound	%	RRI	Compound
1093	Hexanal	0.5	1958	(E)-β-Ionone
1232	(E)-2-Hexenal	0.5	1973	Dodecanol
1244	2-Pentyl furan	0.2	1984	γ-Calacorene
1335	(E)-2-Heptenal	0.2	2001	Isocaryophyllene oxide
1348	6-Methyl-5-hepten-2-one	0.1	2008	Caryophyllene oxide
1360	Hexanol	0.2	2037	Salvial-4(14)-en-1-one
1391	(Z)-3-Hexenol	Tr.	2041	Pentadecanal
1400	Nonanal	0.3	2050	(E)-Nerolidol
1400	Tetradecane	Tr.	2071	Humulene epoxide-II
1416	3-Octen-2-one	0.1	2074	Caryophylla-2(12),6(13)-dien-5-one

TABLE 1. The Composition of the Essential Oil of Centaurea dichroa

1093	Hexanal	0.5	1958	(E)-β-Ionone	0.7
1232	(E)-2-Hexenal	0.5	1973	Dodecanol	0.3
1244	2-Pentyl furan	0.2	1984	y-Calacorene	0.3
1335	(E)-2-Heptenal	0.2	2001	Isocaryophyllene oxide	0.3
1348	6-Methyl-5-hepten-2-one	0.1	2008	Caryophyllene oxide	9.8
1360	Hexanol	0.2	2037	Salvial-4(14)-en-1-one	0.9
1391	(Z)-3-Hexenol	Tr.	2041	Pentadecanal	1.2
1400	Nonanal	0.3	2050	(E)-Nerolidol	0.1
1400	Tetradecane	Tr.	2071	Humulene epoxide-II	1.1
1416	3-Octen-2-one	0.1	2074	Caryophylla-2(12),6(13)-dien-5-one	0.1
1441	(E)-2-Octenal	0.2	2084	Octanoic acid	0.2
1452	1-Octen-3-ol	0.2	2104	Viridiflorol	0.3
1497	α-Copaene	0.6	2131	Hexahydrofarnesyl acetone	1.5
1500	Pentadecane	0.1	2144	Spathulenol	5.8
1506	Decanal	0.5	2179	3,4-Dimethyl-5-pentylidene-2(5H)-furanone	0.9
1516	(E)-Theaspirane	Tr.	2179	Tetradecanol	1.0
1535	β -Bourbonene	0.2	2192	Nonanoic acid	0.4
1541	Benzaldehyde	0.2	2209	T-Muurolol	0.5
1548	(E)-2-Nonenal	0.2	2247	<i>trans-α</i> -Bergamotol	0.4
1553	(Z)-Theaspirane	0.5	2257	β -Eudesmol	1.0
1553	Linalool	0.1	2262	Ethyl hexadecanoate (Ethyl palmitate)	0.5
1562	Octanol	0.1	2289	Oxo-α-ylangene	0.8
1573	(E,E)-3,5-Octadien-2-one	0.3	2298	Decanoic acid	1.3
1600	Hexadecane	0.6	2300	Tricosane	0.4
1602	6-Methyl-3,5-heptadien-2-one	0.2	2316	Caryophylla-2(12),6(13)-dien-5 β -ol (Caryophylladienol I)	0.4
1612	β -Caryophyllene	0.1	2324	Caryophylla-2(12),6(13)-dien-5 α -ol (Caryophylladienol II)	1.1
1617	Undecanal	0.1	2369	Eudesma-4(15),7-dien-4 β -ol	0.2
1631	Hexyl tiglate	0.2	2389	Caryophylla-2(12),6-dien-5 α -ol (Caryophyllenol I)	0.8
1638	β -Cyclocitral	0.3	2392	Caryophylla-2(12),6-dien-5 β -ol (Caryophyllenol II)	1.1
1655	(E)-2-Decenal	0.5	2400	Tetracosane	0.9
1664	Nonanol	0.2	2500	Pentacosane	0.5
1681	(Z)-3-Hexenyl tiglate	0.1	2503	Dodecanoic acid	2.4
1715	(E,E)-2,4-Nonadienal	0.1	2600	Hexacosane	0.5
1722	Dodecanal	0.3	2617	Tridecanoic acid	0.4
1726	Germacrene D	0.4	2622	Phytol	0.4
1742	β -Selinene	3.2	2670	Tetradecanoic acid (Myristic acid)	3.1
1764	(E)-2-Undecenal	0.2	2700	Heptacosane	3.1
1830	Tridecanal	1.1	2800	Octacosane	Tr.
1838	(E)- β -Damascenone	0.2	2810	Benzyl salicylate	Tr.
1868	(E)-Geranyl acetone	0.5	2822	Pentadecanoic acid	1.4
1884	1-Methyl naphthalene	0.1	2900	Nonacosane	3.4
1933	Tetradecanal	0.2	2931	Hexadecanoic acid	11.8
1945	1,5-Epoxy-salvial(4)14-ene	1.2		Total	76.4

RRI: Relative retention indices calculated against *n*-alkanes. %: calculated from FID data. Tr.: Traces (<0.1%).

REFERENCES

- 1. P. H. Davis, Flora of Turkey and East Aegean Islands, Univ. Press: Edinburgh, 1975, 5, pp. 465–585.
- 2. K. Ertugrul, H. Dural, O. Tugay, P. L. Cioni, and I. Morelli, Flavour Fragr. J., 18, 95 (2003).
- F. W. McLafferty and D. B. Stauffer, The Wiley/NBS Registry of Mass Spectral Data, John Wiley and Sons, New 3. York, USA, 1-7, 1988.

%